友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
穿进数学书怎么破-第37部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
如果这是终极关卡的话,绝不会是这种难度,让他们每个人站在不同的色块上必定别有用意。
涂化看向跟自己站在同一平面上的两个挑战者:“你们会玩魔方吗?”
那两人为难地摇了摇头。魔方这种益智玩具一直和数学密不可分,想要将魔方复原,有成千上万种方法。涂化曾经了解过,对于魔方复原似乎有个旋转公式,不论哪种形态的魔方,都可以根据那个公式复原。
但是按照公式,绝对不可能把颜色分布如此杂乱的魔方通过20步复原。能做到这一点的一般都是魔方竞技赛中的职业选手。
正当所有人都陷入为难的时候,与苏格池处于同一平面上的一个男生突然道:“20步……这是魔方上帝之数!”
涂化扒着他这一层平面的边缘向下看,说话的是个身材瘦小的男生。站在他旁边的女生疑惑道:“上帝之数?那是什么?”
苏格池看了那男生一眼:“你会玩魔方?”
男生看样子有些内向,羞怯地点了点头。
见他似乎不想继续解释,苏格池接过他的话道:“我们现在所处的这个魔方是三阶魔方,对于三阶魔方,也就是一个3×3×3各个面都可以自由转动的立方体。这些颜色被打乱时,所形成的组合总共有4325亿亿种。”
“数学家们发现将魔方复原的方法步数有一定的规律,在经过大量的演算之后,发现不论哪一种组合形态的三阶魔方,复原它需要的最少步数,不会超过20。”
他指着脚下的魔方,看着众人:“也就是说我们脚下这个看起来毫无规律的魔方,还原它所需要的最小步数,不会超过20步。所以20就被人们成为魔方上帝之数。”
那个瘦小的男生激动地看着苏格池,结结巴巴道:“你……你也是魔方爱好者?”
苏格池笑笑:“我只是略懂皮毛而已,我相信你一定有了解决办法,对不对?”
那男生趴在地上仔细观察各个面的色块组成情况,思考了一会儿才说道:“我……我大概知道了,这个魔方想要复原的话,最少需要13步。”
涂化趴在直角边缘处,漏出半截脑袋,冲他比了个大拇指:“你好厉害!”
那男生不好意思地挠挠头,小心翼翼地看向大家:“那是不是只要按照我的方法转动魔方就可以了?”
在大家默许之后,男生看起来自信了许多,转过头看了苏格池一眼,指着他前方的那条色块轴道:“这一面……先向左旋转一步。”
他指的那一面正好是涂化对面的那个平面,处于那个平面轴上总共有两个人,其中一个就是在涂化这个平面中和他站对角线的挑战者。
在瘦小魔方男话音落地之后,魔方突然按照他描述的方式转动起来,那两个处在被转动的平面轴上的挑战者控制不住地惊呼出声,下一刻,转动停止。
这两个人分别向左侧移动了一个平面,但他们依然垂直站立在目前的新平面上,并没有发生引力失衡的情况。
就在大家松了一口气的时候,那两人脚下的色块突然消失,脚下变成了一团黑色的虚无,那两人还没反应过来,就尖叫着掉进了魔方中央。
所有人都惊愕地趴在地上观察着魔方内部的情况,但两人跌入魔方之后,就像完全消失了一样,根本寻不见踪迹。
跟涂化处在同一个平面上的女生神色惊恐:“他们……他们这是淘汰了吗?”
涂化仔细观察了一下那两人原本所处的色块,一人是绿色,一人是黄色,那两个色块虽然仍然散发着光芒,但明显能发现它们并不像其他色块一样存在实体,也就是说变成了空的。
这两人就这样平白消失,系统也没有做出任何通报和判断,也没有告诉他们接下来该怎么做。
涂化隐隐觉得,真正的游戏才刚刚开始。魔方存在的目的其实并不是让他们复原,而是让处在色块上的挑战者跌入魔方内部。
他正准备安慰那个女生,就听到系统播报声突然在魔方上空响起:
【叮——】
【挑战者张旭、李萌萌淘汰。】
下一瞬间,那两人原本所处的色块突然愈合,由透明状变成实体。众人哗然,大家你一言我一语,纷纷陷入恐慌中。
“他们两个是因为掉进去才被淘汰的吗?”
“为什么只有他们俩会掉进去,是因为他们的位置移动了吗?”
“那我们所有人的命运不就掌握在那个小个子手里?”
“……”
大家众说纷纭,指导魔方转动的瘦小男生顿时紧张起来,脸上带着歉意:“我……我不知道会这样……”
苏格池看他一眼:“跟你无关。”
“大家冷静一下。”苏格池站直身体,环顾四周朗声道,“他们两个淘汰并不是因为魔方的转动,而是因为他们没有通过魔方内部的关卡。”
苏格池解释道:“首先,这一关绝对不会只有转动魔方恢复原样这么简单,系统让我们站在不同的色块上,必然有他的用意。”
“至于原因,经过一轮转动,大家应该都明白了。”他指着那两人淘汰前站立的色块处,“他们两个人恰巧都在转动的魔方轴上,这就意味着以后的每次转动,处于转动轴上的人都会和他们一样掉进魔方内部,而在内部应该会有一些关卡等待着挑战者,只有通关才能重新回到魔方表面。”
“我们刚刚等待的时间应该就是他们通关的时间,他们两个并没有完成关卡任务,所以被淘汰,色块也完全封闭。”
苏格池的解释虽然非常在理,但不免还是有挑战者对指导魔方转动的男生感到不满:“转哪个都是他说了算?能不能让他换一种方法,最好能尽量避开大家?”
魔方男一脸为难:“魔方这个东西是牵一发而动全身的,稍微走错一步,后面就需要用无数步去弥补。最少步数的方法只有一个,只能按照那个方法转动才行……”
那人还想发难,涂化打断他的话,不悦道:“现在每个平面上都有人,不论怎么转,肯定有人会掉进去。这么多人里能遇到一个会玩魔方的已经是万幸了,你要是还觉得不满,你来给出个转动方法?”
那人自觉理亏,终于闭嘴了。
涂化趴下冲魔方男笑了笑:“你继续!”
魔方男感激地看着他,表情有些犹豫。过了好一会儿才咬牙道:“下一个是……这个面,向右转动两次。”
他手指的正好就是涂化所处的这条轴。跟他同处于一条轴的还有两个女生,三人连忙趴在地上,面色紧张。
果然在魔方男给出指示之后,涂化所处的这条轴开始转动起来。经过两步,涂化转到了原本处于他对面的那个平面上,和沈思易站在同一条直线上。
沈思易看着他,鼓励地话还没说出口,涂化就感到脚下的色块突然变空,然后整个人失重跌入无尽的黑暗中。
失重感持续了十多秒就消失了,魔方已经消失,涂化一个人漂浮在黑色虚空中,并没有遇到和他一起掉下来的那两名女生。
【叮——】
【在一个平面内,请将七个点组合排列,使其中任意三个点构成的三角形至少有一条边长为单位1。】
系统闪着蓝光的屏幕突然出现在涂化面前,而在他左侧则出现了一把标注刻度为“单位1”的三角尺,以及七颗如北斗星辰一样发光的星点。
第78章
在一个平面内; 七个点组合排列,要求任意三个点构成的三角形至少有一条边长为单位1。这就意味着这七个点构成的所有三角形中; 每个三角形至少有一条边的长度是相等的。
根据这个,涂化最先想到的是圆。
在一个图形圆上,圆心到圆周上任意一点的距离都是相等的; 那么只要半径的长度被设置为单位1,那么在圆周上的任意两点与圆心所形成的三角形必然会形成边长为1的等腰三角形。
这个问题看起来很直观; 但题干却给了一个重要的限制条件——总共有7个点。
如果按照涂化的圆形理论; 这七个点应该是一点位于圆心处; 剩下六个点平均分配在圆周上,这样圆周上的六个点就形成了一个等边的六边形。
正六边形的六个顶点与中心点相连接; 就可以很清晰的发现这个六边形是由6个等边三角形组成的,所以只要保证这六个等边三角形的边长为单位1; 那么他们两两所组成的三角形就符合题目条件。
涂化试着用旁边的七颗星点拼凑出一个正六边形出来; 但很快就发现他的这个想法是错误的。
如果忽略中心点; 只看正六边形的六个顶点; 只要有任意两点相邻; 就必然可以组成有一条边为1的三角形。但如果这个三角形的三点不相邻,也就是说每间隔一个顶点取一点,构成的这个比较大的等边三角形的边长就不等于单位1。
所以这个至少有一条边为单位1的组合正六边形是无法完成的,但退而求其次,五边形可以满足这个要求。
因为五边形的五个顶点如果任选三个组成三角形; 至少会有两个顶点相邻。只要保证五边形的边长都为单位1,那么它们所组成的三角形就必然会有一条边长度为1。
可是如果选用五边形的话; 五个顶点加一个中心点……总共只有六个点。题目给出的要求是在一个平面内有七个点,多余的那一点能摆在哪儿?
涂化不知不觉已经陷入了困境。他拿着七颗星点在空中摆来摆去,始终没有发现合适的组合办法。
四周一片空旷,没有人能来帮他。
涂化不禁回想起自己惨不忍睹的数学成绩,以及在前面所经历的关卡中,遇到数学难题时来自队友和苏格池的帮助。
他突然明白过来,这次的这个题目是他必须要经历的一道坎。他能在《数学大闯关》中走到最后,不可否认他身上的确是有一些小聪明的,但更多的则来源于队友的协助。他数学成绩差,所以每次遇到专业的数学题目,他总是力不从心。队友在的时候会有人帮他出谋划策,可终究有他独自面对的这一天。
所以他现在必须独立完成这道题目。他不仅要通关,还要证明自己,数学成绩并不是他的软肋,而是一株不断生长的幼苗,随着他对数学世界的探索和领悟,这颗幼苗总有一日,能为他遮风挡雨。
他必须相信自己,能在《数学大闯关》中走这么远,他的数学其实并不差,只是没有找到方向而已。
现在……就是他探索方向的时刻。
涂化望着浩瀚无垠的虚空,轻轻闭上了眼睛,脑海中那七颗如北斗七星似的光点正在飞速的组合变换,每一种组合方式都在他心中进行过缜密的演算。
至少有一边相等……五边形……等边三角形……
涂化倏地睁开眼,瞬间醍醐灌顶。五边形的任意三个顶点可以组成至少有一条边长为1的三角形,但加上中心点,平面内总共只有六个点。
可是……谁说中心点只能有一个的?
只要把多余的两个点全部放在五边形的内部,就可以完成题目中所表达的要求!
涂化连忙将手边的七个星点拿过来,开始在空中进行拼凑。他的想法很明确,这个五边形虽然每条边的边长为单位1,但这个五边形却不能是正五边形。
首先他用三个点拼成了一个边长为单位1的等边三角形,接着将第四个点放在等边三角形的下方,这样这四个点连接起来,就形成了一个由两个等边三角形堆砌形成的菱形。
他手里还剩三个星点,只要这三个点可以再组成一个一模一样的菱形,且外围的五个点构成五边形,这个排序方法就可以成立。
所以说第二个菱形最上方的顶点必须与前一个菱形共点。
涂化将第一个菱形的上顶点同时作为第二个菱形的上顶点,然后平分夹角,使两个菱形重合,这样七个点排列的图形从外围看就是一个五条边都相等的五边形,而五边形的内部有两点。
这两点分别是2号菱形的左顶点和1号菱形的右顶点。
按照这个方法组合出来的图形中,任意三点组合的三角形,必然有一条边与菱形共边,也就是说,至少有一条边的长度为单位1。
涂化将那七个点按照顺序和角度排列整齐之后,七个光点突然迸射出七彩的光芒。下一刻,光芒就将涂化吸了进去。
转眼间,涂化又回到了魔方上。
他脚下的红色魔方色块格已经变成了实体,而他正瘫坐在色块上,众人都吃惊的望着他。站在他身旁的沈思易连忙将他扶起来,惊喜道:“你回来了,涂化!”
涂化连忙看向和他一起跌入魔方中的两个女生的方向,却发现他们原本所处的色块格已经变成了实体,但两人却没有回来。
【叮——】
【挑战者刘薇、章小雨淘汰。】
涂化是两轮转动之后,唯一从魔方中回来的挑战者。将魔方还原总共需要13步,而在进行了3步的时候,就已经淘汰掉了4名挑战者。
“所以魔方里……到底有什么?”众人满心期待地看着涂化,希望他能给出一个答案。
涂化将自己在魔方中经历的关卡一五一十地讲了出来,不论难度到底怎么样,至少其他人心里都有了底,知道自己即将面对的是什么,也算是提前打了预防针。
涂化觉得其实他遇到的那道题不算难,但是进入魔方世界的五个人只有他一个人回来了,要么是他运气好,要么就是系统在题目的设置上另有玄机。来不及思考其中的原因,下一轮转动就要开始了。
这次魔方男指定的是中间的那条轴,向后方转动两圈。处于中间轴上的人数比较多,总共有五个人,其中就包括沈思易和苏格池。
涂化不免有些紧张,毕竟他的两个队友都在这里,如果两人在魔方中遭遇不测,那么接下来的闯关过程将会减少一大半的助力。他有些不安的看向苏格池,苏格池却向他投来一个安心的眼神,五个人一起跳入魔方深处。
等待的过程总是忐忑的,过了大约有十多分钟的时间,苏格池的身影突然出现在他原本的色块格上,紧接着沈思易也被传送回来,其余三人中只有一个女生回来了,剩下的两人则直接淘汰。
原本18人的开局,到现在为止只剩下12人,而他们对魔方的还原步数还没有进行到一半。
在场的所有人都情绪低落。侥幸从魔方中逃脱的人心有余悸,而还没有经历过转动的人更是对即将面对的考验充满了恐惧。
魔方男脸色苍白,第四次转动即将开启。他指着涂化,声音有些颤抖:“你们那一排……向后方旋转一圈。”
涂化是第一个二次跌入魔方内部的人,这次和他一起的人比较多,另外有两个男生和一个女生。脚下地面腾空的一瞬间,涂化熟练地闭上眼睛,准备迎接下一次挑战。
大约过了五六秒的时间,失重感就消失了。涂化再次回到那片黑暗的虚空中,周围依然听不到任何人声。
【叮——】
【5个平面最多把一个三维空间分成几部分?】
系统屏幕再次弹射在眼前,这次对题目的表述比上一次还要简单,而且任何辅助工具也没有留下,涂化只能一个人蹲在黑暗中完全靠脑子苦思冥想。
他把题目的那句话读了整整三遍,脑海中隐约闪过一些想法。点可以将线分成几部分,线也可以将面分割,同样的道理,面可以分割立方体,这道题目应该属于立体几何的范畴。
涂化记得在一开始学习几何的时候,老师曾经带他们研究过用直线分割平面的规律。当只有一条直线时,这条直线只能将平面一分为二,也就是说这个平面最少被分为两部分,最多也是被分为两部分。
但是如果在此基础上再加一条直线,那么分割的方式就会出现偏差。这条直线可以与第一条直线平行,也可以与其相交。不同的分割方法可以得到不同的结果,当两条直线平行时,这个平面最少被分为2+1=3部分,当两条直线相交时,平面最多被分为2+2=4部分。
当平面内出现三条直线时,按照刚刚的方法进行归纳推理,平面最少被分成4部分,分割方法就是三条直线完全平行;最多可以被分为2+2+3=7部分,在前两条直线相交的基础上,第三条直线分别于这两条直线再次相交,就可以将这个平面分为7个部分。
根据数学归纳法进行推理验证,假设总共有n条直线,很容易发现直线分割平面时,最多可以将整个平面分割成2+2+3+4+……+n=n(n+1)/2+1个部分,所以套入公式,5条直线最多可以将一个平面分割成16个部分。
这个归纳法总结出来的规律其实很简单。因为从第三条直线出现开始,每增加一条直线,想要得到最多的分割方式就是让这条直线与之前的每条直线都相交,所以增加的区域就是它穿过的区域。
被它穿过的区域会被一分为二,增加的部分就是穿过的区域块数。这条直线与平面上原本的直线各有一个交点,但他分开的区域块数却正好是交点数加一。这就证明了当增加到第n条直线时,第n条直线与其他直线总共有n…1个交点,但是却穿过了n个区域,将平面多分出n块来。
平面所处的二维空间和立方体所处的三维空间肯定存在异曲同工之妙。涂化觉得,他应该要利用这个规律,对三维空间中平面切割三维立方体的方法进行归纳推理。
直线与直线相交的是点,那么平面与平面相交得到的就是直线。
按照直线分割平面的推理结果,假设n条直线最多将一个平面分割成了an部分,那么对于一个已经被n个平面分割成bn部分的立方体来说,再增加一个平面,也就是第n+1个平面会与前面的n个平面分别相交,这n个平面与新增加的平面的交叉部分,在这个平面上就被体现为n条直线。
同样的道理,被这个平面穿过的空间区域也会被一分为二,增加的区域数就是它穿过的空间区域数,这个数字就是n条直线将这个平面分割成的块数。
所以,当n个平面已经对三维空间进行了分割之后,新增的第n+1个平面使其增加的空间个数就正巧是直线将平面分割的个数—— a(n+1)。
涂化仿佛被打通了任督二脉,大脑飞速的旋转,很快就推导出了n个平面将一个立方体最多分割成多少块的计算公式:(n^3+5n+6)/6。
最后结合这道题,瞬间得出结论:5个平面最多将一个立方体分成26个部分。
在他作答的下一瞬间,他的身体已经回到了魔方表面。
这就证明他的答案是正确的。涂化恍惚地看着四周的其他挑战者,跟他一起下去的两个男生也一起回来了,但那个女生却直接被淘汰。
那两个男生沾沾自喜,跟旁边的人说其实底下的题目并不难。
但涂化却有种不太好的感觉。他明显发现第二次的题目比第一次难了许多,并且题目从简单的二维组合变成了三维立体几何的思考变换。虽然他最后都答出来了,但如果难度继续增加,他接下来可能会力不从心。
没有人发现涂化担忧的情绪,游戏还在继续。魔方已经转动了6步,按照魔方男的13步计划,还剩下5步就可以完成复原魔方的任务。
场上的挑战者还剩11人。
魔方男思索了一会儿,指着中间那条轴道:“这个面……向前转一次。”
沈思易和苏格池还一直站在中间轴上,所以这也是他们两人第二次进入魔方内部。除了他们两个人之外,还有另外三个男生和他们站在同一个面上。
大家已经熟悉了游戏的规则,对于五人掉进魔方内部并没有太多惊讶。但这次等待的时间明显比上一次更久了,过了差不多二十多分钟,苏格池和沈思易两人才被传送回来。
不幸的是……那三个男生全军覆没。
这是损失人数最多的一次,大家不免都陷入了恐慌,纷纷向沈思易和苏格池询问在魔方内部到底发生了什么。
苏格池皱着眉想了一会儿,看了涂化一眼,面色有些凝重:“那三个人……都不是第一次进入魔方内部。”
果然苏格池的想法与涂化一模一样,那三个男生之所以没有那么容易出来,就是因为在第二次进入魔方内部之后,游戏的难度增加了。
以他们的能力,恐怕不能独立应对难度系数变大的游戏。甚至苏格池和沈思易两人在第二次进入魔方内部之后,也耽误了很长时间。
这一轮直接淘汰了三个人,目前场上只剩下最后8名挑战者,而还原魔方还需要4步。如果涂化的推理没错,随着进入魔方内部次数的增加,遇到的游戏难度也会不断增加,那么接下来他们这四步恐怕就没那么容易通过了。
魔方男作为指挥者,还没有进入过魔方内部,他脸色苍白地看着自己脚下,声音颤抖:“接下来……我在的这条轴,向左转动一次。”
他双眼紧闭,紧张的趴在地面上跟随魔方转动,当魔方停下来时,跟他处于同一个平面上的三个人同时掉了下去。
魔方男是他们进行魔方复原游戏的主心骨,虽然只剩下最后三步,大部分人都知道接下来的步数该怎么走了,但他们并不希望魔方男就此被淘汰。
可事与愿违,等待了足足半个小时的时间,魔方男
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!